skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oparaji, Onyekachi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The structure and dynamics of polystyrene (PS)‐b‐poly(ethylene oxide) block copolymers (BCPs) are studied. The BCPs exhibit microphase‐separated cylindrical and lamellar morphologies. Structural dynamics are measured with X‐ray photon correlation spectroscopy in the small‐angle regime. Morphologies and domain sizes are evaluated using small‐angle X‐ray scattering (SAXS), scanning electron microscopy, and atomic force microscopy. Different solvent processing conditions are investigated. Grain sizes evaluated using SAXS are found to depend on processing only for the rubbery majority BCP. The structural relaxation times are examined as a function of PS volume fraction, temperature, morphology, and structural sizes. Well above the glass transition temperature (Tg) of PS, all samples exhibit stretched autocorrelation decays and diffusive dynamics. NearTgof PS, the dynamics of all samples are anomalous with compressed autocorrelation decays and hyperdiffusive dynamics. This transition occurs at 153 °C or 1.13Tgof PS. In the diffusive regime (at high temperature), structural relaxation times are dependent on the processing method. Near PSTg(at low temperature), structural relaxation times scale with the PS volume fraction. Structural relaxation times do not correlate with grain size, indicating that the out‐of‐equilibrium state of PS dominates the structural dynamics of these strongly phase‐segregated BCPs. 
    more » « less
  2. Commodity PS is synthesized via free radical polymerization, whereas PS in block copolymers (BCPs) is typically synthesized via living anionic polymerization. The purpose of this work is to investigate how the synthesis method impacts important properties such as water sorption and glass transition temperature (Tg). Water sorption is important because the performance of nanostructured polymer membranes in various applications is known to be affected by environmental conditions such as humidity. Tg is important because it dictates processing conditions, both for commodity PS as well as BCPs such as thermoplastic elastomers. Water sorption in commercial PS was found to be 0.5 mgwater/gpolymer at the highest humidities investigated (about 80%), in agreement with literature. On the other hand, syndiotactic PS synthesized anionically at low temperature absorbed more water, up to 1.5 mgwater/gpolymer, due to higher free volume. The greatest impact on water sorption was due to addition of hydrophilic hydroxyl chain ends to atactic PS, which resulted in water sorption of up to 2.3 mgwater/gpolymer. In addition to measuring water sorption and dry Tg separately, the impact of relative humidity on PS Tg was examined. Combined differential scanning calorimetry and dynamic mechanical analysis show that on going from the dry state to high humidity, the Tg of PS decreases by 5 °C. Moreover, the tensile storage modulus of PS decreases from 1.58 GPa at 0% RH to 0.53 GPa at 40% RH. In addition to the practical relevance of this study, this report fills a gap in experimental literature by using a poor solvent system, PS/water, to examine plasticization in the pure polymer limit. 
    more » « less